summaryrefslogtreecommitdiff
path: root/aircraftstudio/evaluator/evaluator.py
diff options
context:
space:
mode:
authorblendoit <blendoit@gmail.com>2019-11-01 18:12:34 -0700
committerblendoit <blendoit@gmail.com>2019-11-01 18:12:34 -0700
commit8b6f11119790c8c930734894a37d2a4aaa42462d (patch)
tree9d6b9013ad4522f9a5598f30b4d3a0fcd26810ac /aircraftstudio/evaluator/evaluator.py
parent5ab73817371c1b4fedbd98838d3cf28984d73004 (diff)
Start work on optimized multiprocessing random a/c gen. & eval.HEADmaster
Diffstat (limited to 'aircraftstudio/evaluator/evaluator.py')
-rw-r--r--aircraftstudio/evaluator/evaluator.py195
1 files changed, 195 insertions, 0 deletions
diff --git a/aircraftstudio/evaluator/evaluator.py b/aircraftstudio/evaluator/evaluator.py
new file mode 100644
index 0000000..18bb692
--- /dev/null
+++ b/aircraftstudio/evaluator/evaluator.py
@@ -0,0 +1,195 @@
+"""
+The evaluator.py module contains functions
+that return calculated data for an aircraft.
+Plotting aircraft components is also possible.
+"""
+
+import os.path
+import concurrent.futures
+import matplotlib.pyplot as plt
+
+from . import drag, inertia, lift, mass
+
+
+def analyze(aircraft):
+ """Analyze a single aircraft."""
+ results = {
+ 'Lift': lift.get_lift_total(aircraft),
+ 'Drag': drag.get_drag_total(aircraft),
+ 'Mass': mass.get_mass_total(aircraft),
+ 'Centroid': inertia.get_centroid(aircraft)
+ }
+ aircraft.results = results
+ return aircraft.name, results
+
+
+def analyze_all(population):
+ """Analyze all aircraft in a given population."""
+ # for aircraft in population.aircrafts:
+ # print(analyze(aircraft))
+ with concurrent.futures.ProcessPoolExecutor() as executor:
+ results = executor.map(analyze, population.aircrafts)
+ for result in results:
+ print(result)
+ return None
+
+ # def analysis(self, V_x, V_z):
+ # """Perform all analysis calculations and store in class instance."""
+
+ # self.drag = self.get_drag(10)
+ # self.lift_rectangular = self.get_lift_rectangular(13.7)
+ # self.lift_elliptical = self.get_lift_elliptical(15)
+ # self.lift_total = self.get_lift_total()
+ # self.mass_dist = self.get_mass_distribution(self.mass_total)
+ # self.centroid = self.get_centroid()
+ # self.I_['x'] = self.get_inertia_terms()[0]
+ # self.I_['z'] = self.get_inertia_terms()[1]
+ # self.I_['xz'] = self.get_inertia_terms()[2]
+ # spar_dx = self.get_dx(self.spar)
+ # spar_dz = self.get_dz(self.spar)
+ # self.spar.dP_x = self.get_dP(spar_dx, spar_dz, V_x, 0,
+ # self.spar.cap_area)
+ # self.spar.dP_z = self.get_dP(spar_dx, spar_dz, 0, V_z,
+ # self.spar.cap_area)
+ # print("yayyyyy")
+ # return None
+
+ # print(f"Analysis results for {aircraft.name}:\n", results)
+ # self.results = self.get_lift_total(aircraft)
+
+ # self.drag = self.get_drag(10)
+ # self.lift_rectangular = self.get_lift_rectangular(13.7)
+ # self.lift_elliptical = self.get_lift_elliptical(15)
+ # self.lift_total = self.get_lift_total()
+ # self.mass_dist = self.get_mass_distribution(self.mass_total)
+ # self.centroid = self.get_centroid()
+ # self.I_['x'] = self.get_inertia_terms()[0]
+ # self.I_['z'] = self.get_inertia_terms()[1]
+ # self.I_['xz'] = self.get_inertia_terms()[2]
+ # spar_dx = self.get_dx(self.spar)
+ # spar_dz = self.get_dz(self.spar)
+ # self.spar.dP_x = self.get_dP(spar_dx, spar_dz, V_x, 0,
+ # self.spar.cap_area)
+ # self.spar.dP_z = self.get_dP(spar_dx, spar_dz, 0, V_z,
+ # self.spar.cap_area)
+ # return None
+
+ def tree_print(self, population):
+ """Print the list of subcomponents."""
+ name = f" TREE FOR {[i.name for i in population.aircraft]} IN {self.name} "
+ num_of_dashes = len(name)
+ print(num_of_dashes * '-')
+ print(name)
+ for aircraft in population:
+ print(".")
+ print(f"`-- {aircraft}")
+ print(f" |--{aircraft.wing}")
+ print(f" | |-- {aircraft.wing.stringers}")
+ for spar in aircraft.wing.spars[:-1]:
+ print(f" | |-- {spar}")
+ print(f" | `-- {aircraft.wing.spars[-1]}")
+ print(f" |-- {aircraft.fuselage}")
+ print(f" `-- {aircraft.propulsion}")
+ print(num_of_dashes * '-')
+ return None
+
+ def tree_save(self,
+ population,
+ save_path='/home/blendux/Projects/Aircraft_Studio/save'):
+ """Save the evaluator's tree to a file."""
+ for aircraft in population.aircraft:
+ file_name = f"{aircraft.name}_tree.txt"
+ full_path = os.path.join(save_path, file_name)
+ with open(full_path, 'w') as f:
+ try:
+ f.write(".\n")
+ f.write(f"`-- {aircraft}\n")
+ f.write(f" |--{aircraft.wing}\n")
+ for spar in aircraft.wing.spars[:-1]:
+ f.write(f" | |-- {spar}\n")
+ f.write(f" | `-- {aircraft.wing.spars[-1]}\n")
+ f.write(f" |-- {aircraft.fuselage}\n")
+ f.write(f" `-- {aircraft.propulsion}\n")
+ logging.debug(f'Successfully wrote to file {full_path}')
+
+ except IOError:
+ print(
+ f'Unable to write {file_name} to specified directory.',
+ 'Was the full path passed to the function?')
+ return None
+
+
+def plot_geom(evaluator):
+ """This function plots analysis results over the airfoil's geometry."""
+ # Plot chord
+ x_chord = [0, evaluator.chord]
+ y_chord = [0, 0]
+ plt.plot(x_chord, y_chord, linewidth='1')
+ # Plot quarter chord
+ plt.plot(evaluator.chord / 4,
+ 0,
+ '.',
+ color='g',
+ markersize=24,
+ label='Quarter-chord')
+ # Plot airfoil surfaces
+ x = [0.98 * x for x in evaluator.airfoil.x]
+ y = [0.98 * z for z in evaluator.airfoil.z]
+ plt.fill(x, y, color='w', linewidth='1', fill=False)
+ x = [1.02 * x for x in evaluator.airfoil.x]
+ y = [1.02 * z for z in evaluator.airfoil.z]
+ plt.fill(x, y, color='b', linewidth='1', fill=False)
+
+ # Plot spars
+ try:
+ for _ in range(len(evaluator.spar.x)):
+ x = (evaluator.spar.x[_])
+ y = (evaluator.spar.z[_])
+ plt.plot(x, y, '-', color='b')
+ except AttributeError:
+ print('No spars to plot.')
+ # Plot stringers
+ try:
+ for _ in range(0, len(evaluator.stringer.x)):
+ x = evaluator.stringer.x[_]
+ y = evaluator.stringer.z[_]
+ plt.plot(x, y, '.', color='y', markersize=12)
+ except AttributeError:
+ print('No stringers to plot.')
+
+ # Plot centroid
+ x = evaluator.centroid[0]
+ y = evaluator.centroid[1]
+ plt.plot(x, y, '.', color='r', markersize=24, label='centroid')
+
+ # Graph formatting
+ plt.xlabel('X axis')
+ plt.ylabel('Z axis')
+
+ plot_bound = max(evaluator.airfoil.x)
+ plt.xlim(-0.10 * plot_bound, 1.10 * plot_bound)
+ plt.ylim(-(1.10 * plot_bound / 2), (1.10 * plot_bound / 2))
+ plt.gca().set_aspect('equal', adjustable='box')
+ plt.gca().legend()
+ plt.grid(axis='both', linestyle=':', linewidth=1)
+ plt.show()
+ return None
+
+
+def plot_lift(evaluator):
+ x = range(evaluator.semi_span)
+ y_1 = evaluator.lift_rectangular
+ y_2 = evaluator.lift_elliptical
+ y_3 = evaluator.lift_total
+ plt.plot(x, y_1, '.', color='b', markersize=4, label='Rectangular lift')
+ plt.plot(x, y_2, '.', color='g', markersize=4, label='Elliptical lift')
+ plt.plot(x, y_3, '.', color='r', markersize=4, label='Total lift')
+
+ # Graph formatting
+ plt.xlabel('Semi-span location')
+ plt.ylabel('Lift')
+
+ plt.gca().legend()
+ plt.grid(axis='both', linestyle=':', linewidth=1)
+ plt.show()
+ return None
Copyright 2019--2024 Marius PETER