summaryrefslogtreecommitdiff
path: root/creator/wing.py
blob: cc7d29adbf65c996e7575f4cf36d87703d88278f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
The wing.py module contains class definitions for and various components
we add to an airfoil (spars, stringers, and ribs).

Classes:
    Airfoil: instantiated with class method to provide coordinates to heirs.
    Spar: inherits from Airfoil.
    Stringer: also inherits from Airfoil.

Functions:
    plot_geom(airfoil): generates a 2D plot of the airfoil & any components.
"""

import logging
import numpy as np
from math import sin, cos, atan
import bisect as bi
import matplotlib.pyplot as plt

import creator.base as base
import resources.materials as mt


class Airfoil(base.Component):
    """This class represents a single NACA airfoil.

    The coordinates are saved as two np.arrays
    for the x- and z-coordinates. The coordinates start at
    the leading edge, travel over the airfoil's upper edge,
    then loop back to the leading edge via the lower edge.

    This method was chosen for easier future exports
    to 3D CAD packages like SolidWorks, which can import such
    geometry as coordinates written in a CSV file.
    """
    def __init__(self,
                 parent,
                 name,
                 chord=68,
                 semi_span=150,
                 material=mt.aluminium):
        super().__init__(parent, name)
        if chord > 20:
            self.chord = chord
        else:
            self.chord = 20
            logging.debug('Chord too small, using minimum value of 20.')
        self.semi_span = semi_span
        self.material = material

    def add_naca(self, naca_num):
        """Generate surface geometry for a NACA airfoil.

        The nested functions perform the required steps to generate geometry,
        and can be called to solve the geometry y-coordinate for any 'x' input.
        Equation coefficients were retrieved from Wikipedia.org.

        Parameters:
        naca_num: 4-digit NACA wing

        Return:
        None
        """
        self.naca_num = naca_num
        # Variables extracted from naca_num argument passed to the function
        m = int(str(naca_num)[0]) / 100
        p = int(str(naca_num)[1]) / 10
        t = int(str(naca_num)[2:]) / 100
        # x-coordinate of maximum camber
        p_c = p * self.chord

        def get_camber(x):
            """
            Returns camber z-coordinate from 1 'x' along the airfoil chord.
            """
            z_c = float()
            if 0 <= x < p_c:
                z_c = (m / (p**2)) * (2 * p * (x / self.chord) -
                                      (x / self.chord)**2)
            elif p_c <= x <= self.chord:
                z_c = (m /
                       ((1 - p)**2)) * ((1 - 2 * p) + 2 * p *
                                        (x / self.chord) - (x / self.chord)**2)
            return (z_c * self.chord)

        def get_thickness(x):
            """Return thickness from 1 'x' along the airfoil chord."""
            x = 0 if x < 0 else x
            z_t = 5 * t * self.chord * (+0.2969 *
                                        (x / self.chord)**0.5 - 0.1260 *
                                        (x / self.chord)**1 - 0.3516 *
                                        (x / self.chord)**2 + 0.2843 *
                                        (x / self.chord)**3 - 0.1015 *
                                        (x / self.chord)**4)
            return z_t

        def get_theta(x):
            dz_c = float()
            if 0 <= x < p_c:
                dz_c = ((2 * m) / p**2) * (p - x / self.chord)
            elif p_c <= x <= self.chord:
                dz_c = (2 * m) / ((1 - p)**2) * (p - x / self.chord)

            theta = atan(dz_c)
            return theta

        def get_coord_u(x):
            x = x - get_thickness(x) * sin(get_theta(x))
            z = get_camber(x) + get_thickness(x) * cos(get_theta(x))
            return (x, z)

        def get_coord_l(x):
            x = x + get_thickness(x) * sin(get_theta(x))
            z = get_camber(x) - get_thickness(x) * cos(get_theta(x))
            return (x, z)

        # Densify x-coordinates 10 times for first 1/4 chord length
        x_chord_25_percent = round(self.chord / 4)
        x_chord = [i / 10 for i in range(x_chord_25_percent * 10)]
        x_chord.extend(i for i in range(x_chord_25_percent, self.chord + 1))
        # Generate our airfoil skin geometry from previous sub-functions
        self.x_c = np.array([])
        self.z_c = np.array([])
        # Upper surface and camber line
        for x in x_chord:
            self.x_c = np.append(self.x_c, x)
            self.z_c = np.append(self.z_c, get_camber(x))
            self.x = np.append(self.x, get_coord_u(x)[0])
            self.z = np.append(self.z, get_coord_u(x)[1])
        # Lower surface
        for x in x_chord[::-1]:
            self.x = np.append(self.x, get_coord_l(x)[0])
            self.z = np.append(self.z, get_coord_l(x)[1])
        return None


class Spar(base.Component):
    """Contains a single spar's data."""
    def __init__(self, parent, name, loc_percent=0.30, material=mt.aluminium):
        """Set spar location as percent of chord length."""
        super().__init__(parent, name)
        super().set_material(material)
        self.cap_area = float()
        # bi.bisect_left: returns index of first value in parent.x > loc
        # This ensures that spar geom intersects with airfoil geom.
        loc = loc_percent * parent.chord
        # Spar upper coordinates
        spar_u = bi.bisect_left(parent.x, loc) - 1
        self.x = np.append(self.x, parent.x[spar_u])
        self.z = np.append(self.z, parent.z[spar_u])
        # Spar lower coordinates
        spar_l = bi.bisect_left(parent.x[::-1], loc)
        self.x = np.append(self.x, parent.x[-spar_l])
        self.z = np.append(self.z, parent.z[-spar_l])
        return None

    def set_cap_area(self, cap_area):
        self.cap_area = cap_area
        return None

    def set_mass(self, mass):
        self.mass = mass
        return None


class Stringer(base.Component):
    """Contains the coordinates of all stringers."""
    def __init__(self):
        super().__init__()
        self.x_start = []
        self.x_end = []
        self.z_start = []
        self.z_end = []
        self.diameter = float()
        self.area = float()

    def add_coord(self, airfoil, spars, stringer_u_1, stringer_u_2,
                  stringer_l_1, stringer_l_2):
        """Add equally distributed stringers to four airfoil locations
        (upper nose, lower nose, upper surface, lower surface).

        Parameters:
        airfoil_coord: packed airfoil coordinates
        spar_coord: packed spar coordinates
        stringer_u_1: upper nose number of stringers
        stringer_u_2: upper surface number of stringers
        stringer_l_1: lower nose number of stringers
        stringer_l_2: lower surface number of stringers

        Returns:
        None
        """

        # Find distance between leading edge and first upper stringer
        interval = spars.x[0][0] / (stringer_u_1 + 1)
        # initialise first self.stringer_x at first interval
        x = interval
        # Add upper stringers from leading edge until first spar.
        for _ in range(0, stringer_u_1):
            # Index of the first value of airfoil.x > x
            i = bi.bisect_left(airfoil.x, x)
            self.x.append(airfoil.x[i])
            self.z.append(airfoil.z[i])
            x += interval
            # Add upper stringers from first spar until last spar
            # TODO: stringer placement if only one spar is created
        interval = (airfoil.spar.x[-1][0] -
                    airfoil.spar.x[0][0]) / (stringer_u_2 + 1)
        x = interval + airfoil.spar.x[0][0]
        for _ in range(0, stringer_u_2):
            i = bi.bisect_left(airfoil.x, x)
            self.x.append(airfoil.x[i])
            self.z.append(airfoil.z[i])
            x += interval

        # Find distance between leading edge and first lower stringer
        interval = airfoil.spar.x[0][1] / (stringer_l_1 + 1)
        x = interval
        # Add lower stringers from leading edge until first spar.
        for _ in range(0, stringer_l_1):
            i = bi.bisect_left(airfoil.x[::-1], x)
            self.x.append(airfoil.x[-i])
            self.z.append(airfoil.z[-i])
            x += interval
            # Add lower stringers from first spar until last spar
        interval = (airfoil.spar.x[-1][1] -
                    airfoil.spar.x[0][1]) / (stringer_l_2 + 1)
        x = interval + airfoil.spar.x[0][1]
        for _ in range(0, stringer_l_2):
            i = bi.bisect_left(airfoil.x[::-1], x)
            self.x.append(airfoil.x[-i])
            self.z.append(airfoil.z[-i])
            x += interval
        return None

    def add_area(self, area):
        self.area = area
        return None

    def add_mass(self, mass):
        self.mass = len(self.x) * mass + len(self.x) * mass
        return None

    def add_webs(self, thickness):
        """Add webs to stringers."""
        for _ in range(len(self.x) // 2):
            self.x_start.append(self.x[_])
            self.x_end.append(self.x[_ + 1])
            self.z_start.append(self.z[_])
            self.z_end.append(self.z[_ + 1])
            self.thickness = thickness
        return None

    def info_print(self, round):
        super().info_print(round)
        print('Stringer Area:\n', np.around(self.area, round))
        return None


def plot_geom(airfoil, spars, stringers):
    """This function plots the airfoil's + sub-components' geometry."""
    fig, ax = plt.subplots()

    # Plot chord
    x = [0, airfoil.chord]
    y = [0, 0]
    ax.plot(x, y, linewidth='1')
    # Plot quarter chord
    ax.plot(airfoil.chord / 4,
            0,
            '.',
            color='g',
            markersize=24,
            label='Quarter-chord')
    # Plot mean camber line
    ax.plot(airfoil.x_c,
            airfoil.z_c,
            '-.',
            color='r',
            linewidth='2',
            label='Mean camber line')
    # Plot airfoil surfaces
    ax.plot(airfoil.x, airfoil.z, color='b', linewidth='1')

    # Plot spars
    try:
        for spar in spars:
            x = (spar.x)
            y = (spar.z)
            ax.plot(x, y, '-', color='y', linewidth='4')
    except AttributeError:
        print('No spars to plot.')
        # Plot stringers
    try:
        for _ in range(0, len(airfoil.stringer.x)):
            x = airfoil.stringer.x[_]
            y = airfoil.stringer.z[_]
            ax.plot(x, y, '.', color='y', markersize=12)
    except AttributeError:
        print('No stringers to plot.')

    # Graph formatting
    # plot_bound = np.amax(airfoil.x)
    ax.set(
        title='NACA ' + str(airfoil.naca_num) + ' airfoil',
        xlabel='X axis',
        # xlim=[-0.10 * plot_bound, 1.10 * plot_bound],
        ylabel='Z axis')
    # ylim=[-(1.10 * plot_bound / 2), (1.10 * plot_bound / 2)])

    plt.grid(axis='both', linestyle=':', linewidth=1)
    plt.gca().set_aspect('equal', adjustable='box')
    plt.gca().legend(bbox_to_anchor=(1, 1),
                     bbox_transform=plt.gcf().transFigure)
    plt.show()
    return fig, ax
Copyright 2019--2024 Marius PETER