summaryrefslogtreecommitdiff
path: root/example.py
blob: 966dcc82859d4bce8857d538e5938a89f7a35670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# This file is part of Marius Peter's airfoil analysis package (this program).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.


import creator  # Create geometry
import evaluator  # Evaluate geometry
import generator  # Iteratevely evaluate instances of geometry and optimize
import numpy as np

import time
start_time = time.time()

# Airfoil dimensions
NACA_NUM = 2412
CHORD_LENGTH = 68  # inches
SEMI_SPAN = 150  # inches

# Thicknesses
SPAR_THICKNESS = 0.4
SKIN_THICKNESS = 0.1

# Component masses
AIRFOIL_MASS = 10  # lbs
SPAR_MASS = 10  # lbs
STRINGER_MASS = 5  # lbs

# Area
SPAR_CAP_AREA = 0.3  # sqin
STRINGER_AREA = 0.1  # sqin

# Amount of stringers
TOP_STRINGERS = 6
BOTTOM_STRINGERS = 4
NOSE_TOP_STRINGERS = 3
NOSE_BOTTOM_STRINGERS = 5

# population information & save path
POP_SIZE = 1
SAVE_PATH = 'C:/Users/blend/github/UCLA_MAE_154B/save'


def main():
    """
    Create an airfoil;
    Evaluate an airfoil;
    Generate a population of airfoils & optimize.
    """

    # Create airfoil instance
    af = creator.Airfoil.from_dimensions(CHORD_LENGTH, SEMI_SPAN)
    # Define NACA airfoil coordinates and mass
    af.add_naca(NACA_NUM)
    af.add_mass(AIRFOIL_MASS)
    # af.info_print(2)
    af.info_save(SAVE_PATH, 'foo_name')

    # Create spar instance
    af.spar = creator.Spar()
    # Define the spar coordinates and mass, stored in single spar object
    af.spar.add_coord(af, 0.23)
    af.spar.add_coord(af, 0.57)
    # Automatically adds spar caps for each spar defined previously
    af.spar.add_spar_caps(SPAR_CAP_AREA)
    af.spar.add_mass(SPAR_MASS)
    af.spar.add_webs(SPAR_THICKNESS)
    # af.spar.info_print(2)
    af.spar.info_save(SAVE_PATH, 'foo_name')

    # Create stringer instance
    af.stringer = creator.Stringer()
    # Compute the stringer coordinates from their quantity in each zone
    af.stringer.add_coord(af,
                          NOSE_TOP_STRINGERS,
                          TOP_STRINGERS,
                          NOSE_BOTTOM_STRINGERS,
                          BOTTOM_STRINGERS)
    af.stringer.add_area(STRINGER_AREA)
    af.stringer.add_mass(STRINGER_MASS)
    af.stringer.add_webs(SKIN_THICKNESS)
    # af.stringer.info_print(2)
    af.stringer.info_save(SAVE_PATH, 'foo_name')

    # Plot components with matplotlib
    creator.plot_geom(af, True)

    # Evaluator object contains airfoil analysis results.
    eval = evaluator.Evaluator(af)
    # The analysis is performed in the evaluator.py module.
    eval.analysis(1, 1)
    # eval.info_print(2)
    eval.info_save(SAVE_PATH, 'foo_name')
    # evaluator.plot_geom(eval)
    # evaluator.plot_lift(eval)

    pop = generator.Population(10)

    # print(help(creator))
    # print(help(evaluator))
    # print(help(generator))

    # Print final execution time
    print("--- %s seconds ---" % (time.time() - start_time))


if __name__ == '__main__':
    main()
Copyright 2019--2024 Marius PETER