summaryrefslogtreecommitdiff
path: root/evaluator.py
blob: 4ab94778942721fcf4c571db44920d67fc7686e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# This file is part of Marius Peter's airfoil analysis package (this program).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.


import sys
import os.path
import numpy as np
from math import sqrt
import matplotlib.pyplot as plt


class Evaluator:
    '''Performs structural evaluations for the airfoil passed as argument.'''

    def __init__(self, airfoil):
        # Evaluator knows all geometrical info from evaluated airfoil
        self.airfoil = airfoil
        # Global dimensions
        self.chord = airfoil.chord
        self.semi_span = airfoil.semi_span
        # mass and area
        self.mass_total = float(airfoil.mass
                                + airfoil.spar.mass
                                + airfoil.stringer.mass)
        self.mass_dist = []
        # Upper coordinates
        self.x_u = airfoil.x_u
        self.z_u = airfoil.z_u
        # Lower coordinates
        self.x_l = airfoil.x_l
        self.z_l = airfoil.z_l
        # Spars
        self.spar = airfoil.spar
        # Stringers
        self.stringer = airfoil.stringer
        # Lifts
        self.lift_rectangular = []
        self.lift_elliptical = []
        self.lift_total = []
        # Drag
        self.drag = []
        # Inertia terms:
        # I_x = self.I_[0]
        # I_z = self.I_[1]
        # I_xz = self.I_[2]
        self.I_ = []

    def info_print(self, round):
        '''
        Print all the component's evaluated data to the terminal.

        This function's output is piped to the 'save_data' function below.
        '''

        name = '    EVALUATOR DATA    '
        num_of_dashes = len(name)

        print(num_of_dashes * '-')
        print(name)
        print('Evaluating:', self.airfoil)
        print('Chord length:', self.chord)
        print('Semi-span:', self.semi_span)
        print('Total airfoil mass:', self.mass_total)
        print('Centroid location:\n', np.around(self.centroid, 3))
        print('Inertia terms:')
        print('I_x:\n', np.around(self.I_[0], 3))
        print('I_z:\n', np.around(self.I_[1], 3))
        print('I_xz:\n', np.around(self.I_[2], 3))
        print(num_of_dashes * '-')
        print('Rectangular lift:\n', np.around(self.lift_rectangular, round))
        print('Elliptical lift:\n', np.around(self.lift_elliptical, round))
        print('Combined lift:\n', np.around(self.lift_total, round))
        print('Distribution of mass:\n', np.around(self.mass_dist, round))
        print('Drag:\n', np.around(self.drag, round))
        return None

    def info_save(self, save_path, number):
        '''Save all the object's coordinates (must be full path).'''

        file_name = 'airfoil_{}_eval.txt'.format(number)
        full_path = os.path.join(save_path, file_name)
        try:
            with open(full_path, 'w') as sys.stdout:
                self.info_print(6)
                # This line required to reset behavior of sys.stdout
                sys.stdout = sys.__stdout__
                print('Successfully wrote to file {}'.format(full_path))
        except IOError:
            print('Unable to write {} to specified directory.\n'
                  .format(file_name),
                  'Was the full path passed to the function?')
        return None

    # All these functions take integer arguments and return lists.

    def get_lift_rectangular(self, lift):
        L_prime = [lift / (self.semi_span * 2)
                   for x in range(self.semi_span)]
        return L_prime

    def get_lift_elliptical(self, L_0):
        L_prime = [L_0 * sqrt(1 - (y / self.semi_span) ** 2)
                   for y in range(self.semi_span)]
        return L_prime

    def get_lift_total(self):
        F_z = [(self.lift_rectangular[_] + self.lift_elliptical[_]) / 2
               for _ in range(len(self.lift_rectangular))]
        return F_z

    def get_mass_distribution(self, total_mass):
        F_z = [total_mass / self.semi_span
               for x in range(0, self.semi_span)]
        return F_z

    def get_drag(self, drag):
        # Transform semi-span integer into list
        semi_span = [x for x in range(0, self.semi_span)]

        # Drag increases after 80% of the semi_span
        cutoff = round(0.8 * self.semi_span)

        # Drag increases by 25% after 80% of the semi_span
        F_x = [drag for x in semi_span[0:cutoff]]
        F_x.extend([1.25 * drag for x in semi_span[cutoff:]])
        return F_x

    def get_centroid(self):
        '''Return the coordinates of the centroid.'''
        area = self.airfoil.stringer.area

        x_stringers = self.airfoil.stringer.x_u + self.airfoil.stringer.x_l
        x_centroid = sum([x * area for x in x_stringers]) / \
            (len(x_stringers) * area)

        z_stringers = self.airfoil.stringer.z_u + self.airfoil.stringer.z_l
        z_centroid = sum([x * area for x in z_stringers]) / \
            (len(x_stringers) * area)
        return(x_centroid, z_centroid)

    def get_inertia_terms(self):
        '''Obtain all inertia terms.'''

        area = self.stringer.area
        x_stringers = self.stringer.x_u + self.stringer.x_l
        z_stringers = self.stringer.z_u + self.stringer.z_l
        stringer_count = range(len(x_stringers))

        # I_x is the sum of (stringer area * z-distance to the centroid) ** 2,
        # for all stringers.
        I_x = sum([area * (z_stringers[_] - self.centroid[1]) ** 2
                   for _ in stringer_count])

        I_z = sum([area * (x_stringers[_] - self.centroid[0]) ** 2
                   for _ in stringer_count])

        I_xz = sum([area * (z_stringers[_] - self.centroid[1])
                    * (x_stringers[_] - self.centroid[0])
                    for _ in stringer_count])

        return(I_x, I_z, I_xz)

    def analysis(self):
        '''Perform all analysis calculations and store in class instance.'''

        self.drag = self.get_drag(10)

        self.lift_rectangular = self.get_lift_rectangular(1000)
        self.lift_elliptical = self.get_lift_elliptical(15)
        self.lift_total = self.get_lift_total()

        self.mass_dist = self.get_mass_distribution(self.mass_total)
        self.centroid = self.get_centroid()
        self.I_ = self.get_inertia_terms()
        return None


def plot_geom(evaluator):
    '''This function plots analysis results over the airfoil's geometry.'''

    # Plot chord
    x_chord = [0, evaluator.chord]
    y_chord = [0, 0]
    plt.plot(x_chord, y_chord, linewidth='1')
    # Plot quarter chord
    q = evaluator.chord / 4
    plt.plot(q, 0, '.', color='g', markersize=24, label='Quarter-chord')
    # Plot upper surface
    plt.plot(evaluator.x_u, evaluator.z_u,
             '', color='b', linewidth='1')
    # Plot lower surface
    plt.plot(evaluator.x_l, evaluator.z_l,
             '', color='b', linewidth='1')

    # Plot spars
    for _ in range(0, len(evaluator.spar.x_u)):
        x = (evaluator.spar.x_u[_], evaluator.spar.x_l[_])
        y = (evaluator.spar.z_u[_], evaluator.spar.z_l[_])
        plt.plot(x, y, '.-', color='b')

    # Plot upper stringers
    for _ in range(0, len(evaluator.stringer.x_u)):
        x = evaluator.stringer.x_u[_]
        y = evaluator.stringer.z_u[_]
        plt.plot(x, y, '.', color='y', markersize=12)
    # Plot lower stringers
    for _ in range(0, len(evaluator.stringer.x_l)):
        x = evaluator.stringer.x_l[_]
        y = evaluator.stringer.z_l[_]
        plt.plot(x, y, '.', color='y', markersize=12)

    # Plot centroid
    x = evaluator.centroid[0]
    y = evaluator.centroid[1]
    plt.plot(x, y, '.', color='r', markersize=24, label='centroid')

    # Graph formatting
    plt.xlabel('X axis')
    plt.ylabel('Z axis')

    plot_bound = evaluator.x_u[-1]
    plt.xlim(- 0.10 * plot_bound, 1.10 * plot_bound)
    plt.ylim(- (1.10 * plot_bound / 2), (1.10 * plot_bound / 2))
    plt.gca().set_aspect('equal', adjustable='box')
    plt.gca().legend()
    plt.grid(axis='both', linestyle=':', linewidth=1)
    plt.show()
    return None


def plot_lift(evaluator):
    x = range(evaluator.semi_span)
    y_1 = evaluator.lift_rectangular
    y_2 = evaluator.lift_elliptical
    y_3 = evaluator.lift_total
    plt.plot(x, y_1, '.', color='b', markersize=4, label='Rectangular lift')
    plt.plot(x, y_2, '.', color='g', markersize=4, label='Elliptical lift')
    plt.plot(x, y_3, '.', color='r', markersize=4, label='Total lift')

    # Graph formatting
    plt.xlabel('Semi-span location')
    plt.ylabel('Lift')

    plt.gca().legend()
    plt.grid(axis='both', linestyle=':', linewidth=1)
    plt.show()
    return None
Copyright 2019--2024 Marius PETER