1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
# This file is part of Marius Peter's airfoil analysis package (this program).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import sys
import os.path
import numpy as np
from math import sin, cos, tan, atan, sqrt, ceil
import bisect as bi
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
# hello im just dicking around
# This variable is required for main.py constant wing dimensions
# to be passed to inheriting classes (Airfoil, Spar, Stringer, Rib).
# This way, we don't have to redeclare our coordinates as parameters for
# our spars, stringers and ribs. This makes for more elegant code.
global parent
class Coordinates:
"""
All classes need coordinates relative to the chord & semi-span.
So, they all inherit from this class.
"""
def __init__(self, chord, semi_span):
# Global dimensions
self.chord = chord
self.semi_span = semi_span
# Upper coordinates
self.x_u = []
self.y_u = []
# Lower coordinates
self.x_l = []
self.y_l = []
# Upper coordinates
self.x_u = []
self.y_u = []
# Lower coordinates
self.x_l = []
self.y_l = []
# Coordinates x_u, y_u, x_l, y_l packed in single list
self.coordinates = []
global parent
parent = self
def create(self, chord, semi_span):
self.chord = chord
self.semi_span = semi_span
chord = self.chord
semi_span = self.semi_span
class Airfoil(Coordinates):
"""This class enables the creation of a NACA airfoil."""
def __init__(self):
global parent
# Run 'Coordinates' super class init method with same chord & 1/2 span.
super().__init__(parent.chord, parent.semi_span)
# NACA number
self.naca_num = int()
# Mean camber line
self.x_c = []
self.y_c = []
# Thickness
self.y_t = []
# dy_c / d_x
self.dy_c = []
# Theta
self.theta = []
def naca(self, naca_num):
"""
This function generates geometry for our chosen NACA airfoil shape.\
The nested functions perform the required steps to generate geometry,\
and can be called to solve the geometry y-coordinate for any 'x' input.\
Equation coefficients were retrieved from Wikipedia.org.
Parameters:
naca_num: 4-digit NACA wing
chord: wing chord length, in any unit
Return:
None
"""
# Variables extracted from 'naca_num' argument passed to the function
self.naca_num = naca_num
m = int(str(naca_num)[0]) / 100
p = int(str(naca_num)[1]) / 10
t = int(str(naca_num)[2:]) / 100
# Chord length. Should be higher than 10.
if self.chord < 10:
self.chord = 10
# x-coordinate of maximum camber
p_c = p * self.chord
def get_camber(x):
"""
Returns 1 camber y-coordinate from 1 'x' along the airfoil chord.
"""
x_c = x
y_c = float()
if 0 <= x < p_c:
y_c = (m / (p**2)) * (2 * p * (x / self.chord) -
(x / self.chord)**2)
elif p_c <= x <= self.chord:
y_c = (m /
((1 - p)**2)) * ((1 - 2 * p) + 2 * p *
(x / self.chord) - (x / self.chord)**2)
else:
print('x-coordinate for camber is out of bounds. '
'Check that 0 < x <= chord.')
return (x_c, y_c * self.chord)
def get_thickness(x):
"""
Returns thickness from 1 'x' along the airfoil chord.
"""
y_t = float()
if 0 <= x <= self.chord:
y_t = 5 * t * self.chord * (0.2969 * sqrt(x / self.chord) -
0.1260 *
(x / self.chord) - 0.3516 *
(x / self.chord)**2 + 0.2843 *
(x / self.chord)**3 - 0.1015 *
(x / self.chord)**4)
else:
print('x-coordinate for thickness is out of bounds. '
'Check that 0 < x <= chord.')
return y_t
def get_dy_c(x):
"""
Returns dy_c/dx from 1 'x' along the airfoil chord.
"""
dy_c = float()
if 0 <= x < p_c:
dy_c = ((2 * m) / p**2) * (p - x / self.chord)
elif p_c <= x <= self.chord:
dy_c = (2 * m) / ((1 - p)**2) * (p - x / self.chord)
return dy_c
def get_theta(dy_c):
theta = atan(dy_c)
return theta
def get_upper_coordinates(x):
x_u = float()
y_u = float()
if 0 <= x < self.chord:
x_u = x - self.y_t[x] * sin(self.theta[x])
y_u = self.y_c[x] + self.y_t[x] * cos(self.theta[x])
elif x == self.chord:
x_u = x - self.y_t[x] * sin(self.theta[x])
y_u = 0 # Make upper curve finish at y = 0
return (x_u, y_u)
def get_lower_coordinates(x):
x_l = float()
y_l = float()
if 0 <= x < self.chord:
x_l = (x + self.y_t[x] * sin(self.theta[x]))
y_l = (self.y_c[x] - self.y_t[x] * cos(self.theta[x]))
elif x == self.chord:
x_l = (x + self.y_t[x] * sin(self.theta[x]))
y_l = 0 # Make lower curve finish at y = 0
return (x_l, y_l)
# Generate all our wing geometries from previous sub-functions
for x in range(0, self.chord + 1):
self.x_c.append(get_camber(x)[0])
self.y_c.append(get_camber(x)[1])
self.y_t.append(get_thickness(x))
self.dy_c.append(get_dy_c(x))
self.theta.append(get_theta(self.dy_c[x]))
self.x_u.append(get_upper_coordinates(x)[0])
self.y_u.append(get_upper_coordinates(x)[1])
self.x_l.append(get_lower_coordinates(x)[0])
self.y_l.append(get_lower_coordinates(x)[1])
self.coordinates.append(self.x_u)
self.coordinates.append(self.y_u)
self.coordinates.append(self.x_l)
self.coordinates.append(self.x_l)
return None
def print_geometry(self, round):
"""
Print all the declared geometry to the terminal.
"""
# Print all our basic geometry, useful for debugging
print('Chord length')
print(self.chord)
print('x_c the x-coordinates of the mean camber line')
print(np.around(self.x_c, round))
print('y_c the y-coordinates of the mean camber line')
print(np.around(self.y_c, round))
print('y_t the y-coordinates of the airfoil thickness')
print(np.around(self.y_t, round))
print('dy_c the derivative of y_c with respect to dx')
print(np.around(self.dy_c, round))
print('theta is like an angle, idk')
print(np.around(self.theta, round))
print('x_u the x-coordinates of the upper airfoil surface')
print(np.around(self.x_u, round))
print('y_u the y-coordinates of the upper airfoil surface')
print(np.around(self.y_u, round))
print('x_l the x-coordinates of the lower airfoil surface')
print(np.around(self.x_l, round))
print('y_l the y-coordinates of lower airfoil surface')
print(np.around(self.y_l, round))
return None
def save_values(self, airfoil_number, save_dir_path):
"""
Save all the declared geometry to save_dir_path (must be full path).
"""
file_name = 'airfoil_%s' % airfoil_number
full_path = os.path.join(save_dir_path, file_name + '.txt')
file = open(full_path, 'w')
sys.stdout = file
self.print_geometry(4)
return None
class Spar(Coordinates):
"""Contains a single spar's location and material."""
global parent
def __init__(self):
super().__init__(parent.chord, parent.semi_span)
# Spar material
self.spar_material = []
def add_spar(self, coordinates, material, spar_x):
"""
Add a single spar at the % chord location given to function.
Parameters:
coordinates: provided by Airfoil.coordinates[x_u, y_u, x_l, y_l].
material: spar's material. Assumes homogeneous material.
spar_x: spar's location as a % of total chord length.
Return:
None
"""
# Airfoil surface coordinates
# unpacked from 'coordinates' (list of lists in 'Airfoil').
x_u = coordinates[0]
y_u = coordinates[1]
x_l = coordinates[2]
y_l = coordinates[3]
# Scaled spar location with regards to chord
loc = spar_x * self.chord
# bisect_left: returns index of first value in x_u > loc.
# This ensures that the spar coordinates intersect with airfoil surface.
spar_x_u = bi.bisect_left(x_u, loc) # index of spar's x_u
spar_x_l = bi.bisect_left(x_l, loc) # index of spar's x_l
# These x and y coordinates are assigned to the spar, NOT airfoil.
self.x_u.append(x_u[spar_x_u])
self.y_u.append(y_u[spar_x_u])
self.x_l.append(x_l[spar_x_l])
self.y_l.append(y_l[spar_x_l])
self.spar_material = material
return None
class Stringer():
"""Contains the coordinates of stringer(s) location and material."""
def __init__(self):
# Stringer attributes
self.stringer_x_u = []
self.stringer_y_u = []
self.stringer_x_l = []
self.stringer_y_l = []
self.stringer_mat = []
def add_stringers(self, material, *density):
"""
Add stringers to the wing from their distribution density between spars.
First half of density[] concerns stringer distribution on
Parameters:
material: stringer material
*density:
"""
# Find interval between leading edge and first upper stringer,
# from density parameter den_u_1.
interval = self.spar_x_u[0] / (den_u_1 * self.spar_x_u[0])
# initialise first self.stringer_x_u at first interval.
x = interval
# Add upper stringers until first spar.
while x < self.spar_x_u[0]:
# Index of the first value of self.x_u > x
x_u = bi.bisect_left(self.x_u, x)
self.stringer_x_u.append(self.x_u[x_u])
self.stringer_y_u.append(self.y_u[x_u])
x += interval
# Find interval between leading edge and first lower stringer,
# from density parameter den_l_1.
interval = self.spar_x_u[0] / (den_l_1 * self.spar_x_u[0])
# initialise first self.stringer_x_l at first interval.
x = interval
# Add lower stringers until first spar.
while x < self.spar_x_l[0]:
# Index of the first value of self.x_l > x
x_u = bi.bisect_left(self.x_l, x)
self.stringer_x_l.append(self.x_l[x_u])
self.stringer_y_l.append(self.y_l[x_u])
x += interval
return None
def plot(airfoil, spar):
"""This function plots the elements passed as arguments."""
print('Plotting airfoil.')
# Plot chord
x_chord = [0, airfoil.chord]
y_chord = [0, 0]
plt.plot(x_chord, y_chord, linewidth='1')
# Plot mean camber line
plt.plot(airfoil.x_c,
airfoil.y_c,
'-.',
color='r',
linewidth='2',
label='mean camber line')
# Plot upper surface
plt.plot(airfoil.x_u, airfoil.y_u, '', color='b', linewidth='1')
# Plot lower surface
plt.plot(airfoil.x_l, airfoil.y_l, '', color='b', linewidth='1')
# Plot spars
try:
for _ in range(0, len(spar.x_u)):
x = (spar.spar_x_u[_], spar.spar_x_l[_])
y = (spar.spar_y_u[_], spar.spar_y_l[_])
plt.plot(x, y, '.-', color='b', label='spar')
plt.legend()
except:
print('Did plot spars. Were they added?')
# Plot stringers
# if len(self.spar_x) != 0:
# for _ in range(0, len(self.stringer_x)):
# x = (self.stringer_x[_], self.stringer_x[_])
# y = (self.stringer_y_u[_], self.stringer_y_l[_])
# plt.scatter(x, y, color='y', linewidth='1',
# else:
# print('Unable to plot stringers. Were they created?')
# Graph formatting
plt.gcf().set_size_inches(9, 2.2)
plt.xlabel('X axis')
plt.ylabel('Y axis')
# plt.gcf().set_size_inches(self.chord, max(self.y_u) - min(self.y_l))
plt.grid(axis='both', linestyle=':', linewidth=1)
plt.show()
return None
def main():
return None
if __name__ == '__main__':
main()
|