1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
# This file is part of Marius Peter's airfoil analysis package (this program).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import creator # Create geometry
import evaluator # Evaluate geometry
import generator # Iteratevely evaluate instances of geometry and optimize
import numpy as np
import time
start_time = time.time()
# Airfoil dimensions
NACA_NUM = 2412
CHORD_LENGTH = 68 # inches
SEMI_SPAN = 150 # inches
# Thicknesses
SPAR_THICKNESS = 0.4
SKIN_THICKNESS = 0.1
# Component masses
AIRFOIL_MASS = 10 # lbs
SPAR_MASS = 10 # lbs
STRINGER_MASS = 5 # lbs
# Area
SPAR_CAP_AREA = 0.3 # sqin
STRINGER_AREA = 0.1 # sqin
# Amount of stringers
TOP_STRINGERS = 6
BOTTOM_STRINGERS = 4
NOSE_TOP_STRINGERS = 3
NOSE_BOTTOM_STRINGERS = 5
# population information & save path
POP_SIZE = 1
SAVE_PATH = 'C:/Users/blend/github/UCLA_MAE_154B/save'
def main():
'''
Create an airfoil;
Evaluate an airfoil;
Generate a population of airfoils & optimize.
'''
# Create coordinate system specific to our airfoil dimensions.
# TODO: imperial + metric unit setting
creator.Coordinates(CHORD_LENGTH, SEMI_SPAN)
# Interate through all wings in population, creating and evaluating them.
for _ in range(1, POP_SIZE + 1):
# Create airfoil instance
af = creator.Airfoil()
# Define NACA airfoil coordinates and mass
af.add_naca(NACA_NUM)
af.add_mass(AIRFOIL_MASS)
af.info_print(2)
af.info_save(SAVE_PATH, _)
# Create spar instance
af.spar = creator.Spar()
# Define the spar coordinates and mass, stored in single spar object
af.spar.add_coord(af, 0.20)
af.spar.add_coord(af, 0.65)
# Automatically adds spar caps for every previously defined
af.spar.add_spar_caps(SPAR_CAP_AREA)
af.spar.add_mass(SPAR_MASS)
af.spar.add_webs(SPAR_THICKNESS)
af.spar.info_print(2)
af.spar.info_save(SAVE_PATH, _)
# Create stringer instance
af.stringer = creator.Stringer()
# Compute the stringer coordinates from their quantity in each zone
af.stringer.add_coord(af,
NOSE_TOP_STRINGERS,
TOP_STRINGERS,
NOSE_BOTTOM_STRINGERS,
BOTTOM_STRINGERS)
af.stringer.add_area(STRINGER_AREA)
af.stringer.add_mass(STRINGER_MASS)
af.stringer.add_webs(SKIN_THICKNESS)
af.stringer.info_print(2)
af.stringer.info_save(SAVE_PATH, _)
# Plot components with matplotlib
creator.plot_geom(af)
# Evaluator object contains airfoil analysis results.
eval = evaluator.Evaluator(af)
# The analysis is performed in the evaluator.py module.
eval.analysis(1, 1)
eval.info_print(2)
eval.info_save(SAVE_PATH, _)
evaluator.plot_geom(eval)
evaluator.plot_lift(eval)
# Print final execution time
print("--- %s seconds ---" % (time.time() - start_time))
if __name__ == '__main__':
main()
|