1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
# This file is part of Marius Peter's airfoil analysis package (this program).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import sys
import os.path
import numpy as np
from math import sin, cos, atan, sqrt
import bisect as bi
import matplotlib.pyplot as plt
# This variable is required for main.py constant wing dimensions
# to be passed to inheriting classes (Airfoil, Spar, Stringer, Rib).
# This way, we don't have to redeclare our coordinates as parameters for
# our spars, stringers and ribs. This makes for more elegant code.
global parent
class Coordinates:
'''
All airfoil components need the following:
Parameters:
* Component material
* Coordinates relative to the chord & semi-span
Methods:
* Print component coordinates
* Save component coordinates to file specified in main.py
So, all component classes inherit from class Coordinates.
'''
def __init__(self, chord, semi_span):
# Global dimensions
self.chord = chord if chord > 40 else 40
self.semi_span = semi_span
# mass and area
self.mass = float()
self.area = float()
# Component material
self.material = str()
# Coordinates
self.x = []
self.z = []
# The airfoil components know the Coordinates instance's coords
global parent
parent = self
def __str__(self):
return type(self).__name__
def info_print(self, round):
'''
Print all the component's coordinates to the terminal.
This function's output is piped to the 'save_coord' function below.
'''
name = ' CREATOR DATA '
num_of_dashes = len(name)
print(num_of_dashes * '-')
print(name)
print('Component:', str(self))
print('Chord length:', self.chord)
print('Semi-span:', self.semi_span)
print('Mass:', self.mass)
print(num_of_dashes * '-')
print('x-coordinates:\n', np.around(self.x, round))
print('z-coordinates:\n', np.around(self.z, round))
return None
def info_save(self, save_path, number):
'''
Save all the object's coordinates (must be full path).
'''
file_name = '{}_{}.txt'.format(str(self).lower(), number)
full_path = os.path.join(save_path, file_name)
try:
with open(full_path, 'w') as sys.stdout:
self.info_print(6)
# This line required to reset behavior of sys.stdout
sys.stdout = sys.__stdout__
print('Successfully wrote to file {}'.format(full_path))
except IOError:
print('Unable to write {} to specified directory.\n'
.format(file_name),
'Was the full path passed to the function?')
return None
class Airfoil(Coordinates):
'''
This class enables the creation of a single NACA airfoil.
Please note: the coordinates are saved as two lists
for the x- and z-coordinates. The coordinates start at
the leading edge, travel over the airfoil's upper edge,
then loop back to the leading edge via the lower edge.
This method was chosen for easier future exports
to 3D CAD packages like SolidWorks, which can import such
geometry as coordinates written in a CSV file.
'''
def __init__(self):
global parent
# Run 'Coordinates' super class init method with same chord & 1/2 span.
super().__init__(parent.chord, parent.semi_span)
# NACA number
self.naca_num = int()
# Mean camber line
self.x_c = []
self.z_c = []
def add_naca(self, naca_num):
'''
This function generates geometry for our chosen NACA airfoil shape.
The nested functions perform the required steps to generate geometry,
and can be called to solve the geometry y-coordinate for any 'x' input.
Equation coefficients were retrieved from Wikipedia.org.
Parameters:
naca_num: 4-digit NACA wing
Return:
None
'''
# Variables extracted from 'naca_num' argument passed to the function
self.naca_num = naca_num
m = int(str(naca_num)[0]) / 100
p = int(str(naca_num)[1]) / 10
t = int(str(naca_num)[2:]) / 100
# x-coordinate of maximum camber
p_c = p * self.chord
def get_camber(x):
'''
Returns camber z-coordinate from 1 'x' along the airfoil chord.
'''
z_c = float()
if 0 <= x < p_c:
z_c = (m / (p ** 2)) * (2 * p * (x / self.chord)
- (x / self.chord) ** 2)
elif p_c <= x <= self.chord:
z_c = (m / ((1 - p) ** 2)) * ((1 - 2 * p)
+ 2 * p * (x / self.chord)
- (x / self.chord) ** 2)
return (z_c * self.chord)
def get_thickness(x):
'''Returns thickness from 1 'x' along the airfoil chord.'''
x = 0 if x < 0 else x
z_t = 5 * t * self.chord * (
+ 0.2969 * sqrt(x / self.chord)
- 0.1260 * (x / self.chord)
- 0.3516 * (x / self.chord) ** 2
+ 0.2843 * (x / self.chord) ** 3
- 0.1015 * (x / self.chord) ** 4)
return z_t
def get_theta(x):
dz_c = float()
if 0 <= x < p_c:
dz_c = ((2 * m) / p ** 2) * (p - x / self.chord)
elif p_c <= x <= self.chord:
dz_c = (2 * m) / ((1 - p) ** 2) * (p - x / self.chord)
theta = atan(dz_c)
return theta
def get_upper_coord(x):
x = x - get_thickness(x) * sin(get_theta(x))
z = get_camber(x) + get_thickness(x) * cos(get_theta(x))
return (x, z)
def get_lower_coord(x):
x = x + get_thickness(x) * sin(get_theta(x))
z = get_camber(x) - get_thickness(x) * cos(get_theta(x))
return (x, z)
# Densify x-coordinates 10 times for first 1/4 chord length
x_chord_25_percent = round(self.chord / 4)
x_chord = [i / 10 for i in range(x_chord_25_percent * 10)]
x_chord.extend(i for i in range(x_chord_25_percent, self.chord + 1))
# Reversed list for our lower airfoil coordinate densification
x_chord_rev = [i for i in range(self.chord, x_chord_25_percent, -1)]
extend = [i / 10 for i in range(x_chord_25_percent * 10, -1, -1)]
x_chord_rev.extend(extend)
# Generate our airfoil geometry from previous sub-functions.
for x in x_chord:
self.x_c.append(x)
self.z_c.append(get_camber(x))
self.x.append(get_upper_coord(x)[0])
self.z.append(get_upper_coord(x)[1])
for x in x_chord_rev:
self.x.append(get_lower_coord(x)[0])
self.z.append(get_lower_coord(x)[1])
return None
def add_mass(self, mass):
self.mass = mass
def info_print(self, round):
super().info_print(round)
print('x_c the camber x-coordinates:\n', np.around(self.x_c, round))
print('z_c the camber z-coordinates:\n', np.around(self.z_c, round))
return None
class Spar(Coordinates):
'''Contains a single spar's location.'''
global parent
def __init__(self):
super().__init__(parent.chord, parent.semi_span)
self.x_start = []
self.x_end = []
self.thickness = float()
self.z_start = []
self.z_end = []
self.dx = float()
self.dz = float()
self.dP_x = float()
self.dP_z = float()
def add_coord(self, airfoil, x_loc_percent):
'''
Add a single spar at the % chord location given to function.
Parameters:
airfoil: gives the spar access to airfoil's coordinates.
x_loc_percent: spar's location as a % of total chord length.
Return:
None
'''
# Scaled spar location with regards to chord
loc = x_loc_percent * self.chord
# bi.bisect_left: returns index of first value in airfoil.x > loc
# This ensures that spar geom intersects with airfoil geom.
# Spar upper coordinates
spar_x = bi.bisect_left(airfoil.x, loc) - 1
x = [airfoil.x[spar_x]]
z = [airfoil.z[spar_x]]
# Spar lower coordinates
spar_x = bi.bisect_left(airfoil.x[::-1], loc) - 1
x += [airfoil.x[-spar_x]]
z += [airfoil.z[-spar_x]]
self.x.append(x)
self.z.append(z)
return None
def add_spar_caps(self, spar_cap_area):
self.cap_area = spar_cap_area
return None
def add_mass(self, mass):
self.mass = len(self.x) * mass
return None
def add_webs(self, thickness):
'''Add webs to spars.'''
for _ in range(len(self.x)):
self.x_start.append(self.x[_][0])
self.x_end.append(self.x[_][1])
self.z_start.append(self.z[_][0])
self.z_end.append(self.z[_][1])
self.thickness = thickness
return None
class Stringer(Coordinates):
'''Contains the coordinates of all stringers.'''
global parent
def __init__(self):
super().__init__(parent.chord, parent.semi_span)
self.x_start = []
self.x_end = []
self.thickness = float()
self.z_start = []
self.z_end = []
self.area = float()
# self.dx = float()
# self.dz = float()
# self.dP_x = float()
# self.dP_z = float()
def add_coord(self, airfoil,
stringer_u_1, stringer_u_2,
stringer_l_1, stringer_l_2):
'''
Add equally distributed stringers to four airfoil locations
(upper nose, lower nose, upper surface, lower surface).
Parameters:
airfoil_coord: packed airfoil coordinates
spar_coord: packed spar coordinates
stringer_u_1: upper nose number of stringers
stringer_u_2: upper surface number of stringers
stringer_l_1: lower nose number of stringers
stringer_l_2: lower surface number of stringers
Returns:
None
'''
# Find distance between leading edge and first upper stringer
interval = airfoil.spar.x[0][0] / (stringer_u_1 + 1)
# initialise first self.stringer_x at first interval
x = interval
# Add upper stringers from leading edge until first spar.
for _ in range(0, stringer_u_1):
# Index of the first value of airfoil.x > x
i = bi.bisect_left(airfoil.x, x)
self.x.append(airfoil.x[i])
self.z.append(airfoil.z[i])
x += interval
# Add upper stringers from first spar until last spar
# TODO: stringer placement if only one spar is created
interval = (airfoil.spar.x[-1][0]
- airfoil.spar.x[0][0]) / (stringer_u_2 + 1)
x = interval + airfoil.spar.x[0][0]
for _ in range(0, stringer_u_2):
i = bi.bisect_left(airfoil.x, x)
self.x.append(airfoil.x[i])
self.z.append(airfoil.z[i])
x += interval
# Find distance between leading edge and first lower stringer
interval = airfoil.spar.x[0][1] / (stringer_l_1 + 1)
x = interval
# Add lower stringers from leading edge until first spar.
for _ in range(0, stringer_l_1):
i = bi.bisect_left(airfoil.x[::-1], x)
self.x.append(airfoil.x[-i])
self.z.append(airfoil.z[-i])
x += interval
# Add lower stringers from first spar until last spar
interval = (airfoil.spar.x[-1][1]
- airfoil.spar.x[0][1]) / (stringer_l_2 + 1)
x = interval + airfoil.spar.x[0][1]
for _ in range(0, stringer_l_2):
i = bi.bisect_left(airfoil.x[::-1], x)
self.x.append(airfoil.x[-i])
self.z.append(airfoil.z[-i])
x += interval
return None
def add_area(self, area):
self.area = area
return None
def add_mass(self, mass):
self.mass = len(self.x) * mass + len(self.x) * mass
return None
def add_webs(self, thickness):
'''Add webs to stringers.'''
for _ in range(len(self.x) // 2):
self.x_start.append(self.x[_])
self.x_end.append(self.x[_ + 1])
self.z_start.append(self.z[_])
self.z_end.append(self.z[_ + 1])
self.thickness = thickness
return None
def info_print(self, round):
super().info_print(round)
print('Stringer Area:\n', np.around(self.area, round))
return None
def plot_geom(airfoil):
'''This function plots the airfoil's + sub-components' geometry.'''
# Plot chord
x_chord = [0, airfoil.chord]
y_chord = [0, 0]
plt.plot(x_chord, y_chord, linewidth='1')
# Plot quarter chord
plt.plot(airfoil.chord / 4, 0, '.', color='g',
markersize=24, label='Quarter-chord')
# Plot mean camber line
plt.plot(airfoil.x_c, airfoil.z_c, '-.', color='r', linewidth='2',
label='Mean camber line')
# Plot airfoil surfaces
plt.fill(airfoil.x, airfoil.z, color='b', linewidth='1', fill=False)
# Plot spars
try:
for _ in range(len(airfoil.spar.x)):
x = (airfoil.spar.x[_])
y = (airfoil.spar.z[_])
plt.plot(x, y, '-', color='b')
except AttributeError:
print('No spars to plot.')
# Plot stringers
try:
for _ in range(0, len(airfoil.stringer.x)):
x = airfoil.stringer.x[_]
y = airfoil.stringer.z[_]
plt.plot(x, y, '.', color='y', markersize=12)
except AttributeError:
print('No stringers to plot.')
# Graph formatting
plt.xlabel('X axis')
plt.ylabel('Z axis')
plot_bound = max(airfoil.x)
plt.xlim(- 0.10 * plot_bound, 1.10 * plot_bound)
plt.ylim(- (1.10 * plot_bound / 2), (1.10 * plot_bound / 2))
plt.gca().set_aspect('equal', adjustable='box')
plt.gca().legend()
plt.grid(axis='both', linestyle=':', linewidth=1)
plt.show()
return None
def main():
return None
if __name__ == '__main__':
main()
|