# -*- mode: org; -*- #+TITLE: Quadrature Amplitude Modulation #+SUBTITLE: A method for digital modulation widely used in modern telecommunication. #+AUTHOR: Marius Peter #+DATE: <2022-03-31 Thu> #+DESCRIPTION: Quadrature Ampliture Modulation: a method for digital modulation widely used in modern telecommunication. #+MACRO: QAM quadrature amplitude modulation #+begin_abstract Quadrature Amplitude Modulation is widely used. #+end_abstract * Complex numbers Euler equation forming the basis of {{{QAM}}}. #+NAME: euler #+CAPTION: This is a caption. \begin{equation} e^{j\theta} = \cos(\theta) + j\sin(\theta) \end{equation} Equation [[euler]] tells us that any complex phasor can be decomposed into the sum of a cosine and sine component. ** Cosine---the in-phase component #+NAME: cosine \begin{equation} \cos(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} = \frac{e^{j2\pi f_0 t}}{2} + \frac{e^{-j2\pi f_0 t}}{2} \end{equation} We see that this equation features the following elements: | | | | \( -j2\pi f_0 t \) | Negative frequency | | \( j2\pi f_0 t \) | Positive frequency | | \( \frac{1}{2} \) | Component magnitude | ** Sine---the quadrature component #+NAME: sine \begin{equation} \sin(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} - e^{-j2\pi f_0 t}}{2} = \frac{e^{j2\pi f_0 t}}{2} - \frac{e^{-j2\pi f_0 t}}{2} \end{equation} * The constellation #+begin_insight QAM is based on imaginary numbers. #+end_insight | Real | Imaginary | |------+-----------| | 1 | i | | 2 | -i | | | |