""" The evaluator.py module contains a single Evaluator class, which knows all the attributes of a specified Aircraft instance, and contains functions to analyse the airfoil's geometrical & structural properties. """ import sys import os.path import numpy as np from math import sqrt import matplotlib.pyplot as plt class Evaluator: """Performs structural evaluations for the airfoil passed as argument.""" def __init__(self, airfoil): # Evaluator knows all geometrical info from evaluated airfoil self.airfoil = airfoil self.spar = airfoil.spar self.stringer = airfoil.stringer # Global dimensions self.chord = airfoil.chord self.semi_span = airfoil.semi_span # Mass & spanwise distribution self.mass_total = float(airfoil.mass + airfoil.spar.mass + airfoil.stringer.mass) self.mass_dist = [] # Lift self.lift_rectangular = [] self.lift_elliptical = [] self.lift_total = [] # Drag self.drag = [] # centroid self.centroid = [] # Inertia terms: self.I_ = {'x': 0, 'z': 0, 'xz': 0} def __str__(self): return type(self).__name__ def info_print(self, round): """Print all the component's evaluated data to the terminal.""" name = ' EVALUATOR DATA FOR {} '.format(str(self).upper()) num_of_dashes = len(name) print(num_of_dashes * '-') print(name) for k, v in self.__dict__.items(): if type(v) != list: print('{}:\n'.format(k), v) print(num_of_dashes * '-') for k, v in self.__dict__.items(): if type(v) == list: print('{}:\n'.format(k), np.around(v, round)) return None def info_save(self, save_path, number): """Save all the object's coordinates (must be full path).""" file_name = 'airfoil_{}_eval.txt'.format(number) full_path = os.path.join(save_path, file_name) try: with open(full_path, 'w') as sys.stdout: self.info_print(6) # This line required to reset behavior of sys.stdout sys.stdout = sys.__stdout__ print('Successfully wrote to file {}'.format(full_path)) except IOError: print( 'Unable to write {} to specified directory.\n'.format( file_name), 'Was the full path passed to the function?') return None # All these functions take integer arguments and return lists. def get_lift_rectangular(self, lift): L_prime = [lift / (self.semi_span * 2) for x in range(self.semi_span)] return L_prime def get_lift_elliptical(self, L_0): L_prime = [ L_0 / (self.semi_span * 2) * sqrt(1 - (y / self.semi_span)**2) for y in range(self.semi_span) ] return L_prime def get_lift_total(self): F_z = [(self.lift_rectangular[_] + self.lift_elliptical[_]) / 2 for _ in range(len(self.lift_rectangular))] return F_z def get_mass_distribution(self, total_mass): F_z = [total_mass / self.semi_span for x in range(0, self.semi_span)] return F_z def get_drag(self, drag): # Transform semi-span integer into list semi_span = [x for x in range(0, self.semi_span)] # Drag increases after 80% of the semi_span cutoff = round(0.8 * self.semi_span) # Drag increases by 25% after 80% of the semi_span F_x = [drag for x in semi_span[0:cutoff]] F_x.extend([1.25 * drag for x in semi_span[cutoff:]]) return F_x def get_centroid(self): """Return the coordinates of the centroid.""" stringer_area = self.stringer.area cap_area = self.spar.cap_area caps_x = [value for spar in self.spar.x for value in spar] caps_z = [value for spar in self.spar.z for value in spar] stringers_x = self.stringer.x stringers_z = self.stringer.z denominator = float( len(caps_x) * cap_area + len(stringers_x) * stringer_area) centroid_x = float( sum([x * cap_area for x in caps_x]) + sum([x * stringer_area for x in stringers_x])) centroid_x = centroid_x / denominator centroid_z = float( sum([z * cap_area for z in caps_z]) + sum([z * stringer_area for z in stringers_z])) centroid_z = centroid_z / denominator return (centroid_x, centroid_z) def get_inertia_terms(self): """Obtain all inertia terms.""" stringer_area = self.stringer.area cap_area = self.spar.cap_area # Adds upper and lower components' coordinates to list x_stringers = self.stringer.x z_stringers = self.stringer.z x_spars = self.spar.x[:][0] + self.spar.x[:][1] z_spars = self.spar.z[:][0] + self.spar.z[:][1] stringer_count = range(len(x_stringers)) spar_count = range(len(self.spar.x)) # I_x is the sum of the contributions of the spar caps and stringers # TODO: replace list indices with dictionary value I_x = sum([ cap_area * (z_spars[i] - self.centroid[1])**2 for i in spar_count ]) I_x += sum([ stringer_area * (z_stringers[i] - self.centroid[1])**2 for i in stringer_count ]) I_z = sum([ cap_area * (x_spars[i] - self.centroid[0])**2 for i in spar_count ]) I_z += sum([ stringer_area * (x_stringers[i] - self.centroid[0])**2 for i in stringer_count ]) I_xz = sum([ cap_area * (x_spars[i] - self.centroid[0]) * (z_spars[i] - self.centroid[1]) for i in spar_count ]) I_xz += sum([ stringer_area * (x_stringers[i] - self.centroid[0]) * (z_stringers[i] - self.centroid[1]) for i in stringer_count ]) return (I_x, I_z, I_xz) def get_dx(self, component): return [x - self.centroid[0] for x in component.x_start] def get_dz(self, component): return [x - self.centroid[1] for x in component.x_start] def get_dP(self, xDist, zDist, V_x, V_z, area): I_x = self.I_['x'] I_z = self.I_['z'] I_xz = self.I_['xz'] denom = float(I_x * I_z - I_xz**2) z = float() for _ in range(len(xDist)): z += float(-area * xDist[_] * (I_x * V_x - I_xz * V_z) / denom - area * zDist[_] * (I_z * V_z - I_xz * V_x) / denom) return z def analysis(self, V_x, V_z): """Perform all analysis calculations and store in class instance.""" self.drag = self.get_drag(10) self.lift_rectangular = self.get_lift_rectangular(13.7) self.lift_elliptical = self.get_lift_elliptical(15) self.lift_total = self.get_lift_total() self.mass_dist = self.get_mass_distribution(self.mass_total) self.centroid = self.get_centroid() self.I_['x'] = self.get_inertia_terms()[0] self.I_['z'] = self.get_inertia_terms()[1] self.I_['xz'] = self.get_inertia_terms()[2] spar_dx = self.get_dx(self.spar) spar_dz = self.get_dz(self.spar) self.spar.dP_x = self.get_dP(spar_dx, spar_dz, V_x, 0, self.spar.cap_area) self.spar.dP_z = self.get_dP(spar_dx, spar_dz, 0, V_z, self.spar.cap_area) return None def plot_geom(evaluator): """This function plots analysis results over the airfoil's geometry.""" # Plot chord x_chord = [0, evaluator.chord] y_chord = [0, 0] plt.plot(x_chord, y_chord, linewidth='1') # Plot quarter chord plt.plot(evaluator.chord / 4, 0, '.', color='g', markersize=24, label='Quarter-chord') # Plot airfoil surfaces x = [0.98 * x for x in evaluator.airfoil.x] y = [0.98 * z for z in evaluator.airfoil.z] plt.fill(x, y, color='w', linewidth='1', fill=False) x = [1.02 * x for x in evaluator.airfoil.x] y = [1.02 * z for z in evaluator.airfoil.z] plt.fill(x, y, color='b', linewidth='1', fill=False) # Plot spars try: for _ in range(len(evaluator.spar.x)): x = (evaluator.spar.x[_]) y = (evaluator.spar.z[_]) plt.plot(x, y, '-', color='b') except AttributeError: print('No spars to plot.') # Plot stringers try: for _ in range(0, len(evaluator.stringer.x)): x = evaluator.stringer.x[_] y = evaluator.stringer.z[_] plt.plot(x, y, '.', color='y', markersize=12) except AttributeError: print('No stringers to plot.') # Plot centroid x = evaluator.centroid[0] y = evaluator.centroid[1] plt.plot(x, y, '.', color='r', markersize=24, label='centroid') # Graph formatting plt.xlabel('X axis') plt.ylabel('Z axis') plot_bound = max(evaluator.airfoil.x) plt.xlim(-0.10 * plot_bound, 1.10 * plot_bound) plt.ylim(-(1.10 * plot_bound / 2), (1.10 * plot_bound / 2)) plt.gca().set_aspect('equal', adjustable='box') plt.gca().legend() plt.grid(axis='both', linestyle=':', linewidth=1) plt.show() return None def plot_lift(evaluator): x = range(evaluator.semi_span) y_1 = evaluator.lift_rectangular y_2 = evaluator.lift_elliptical y_3 = evaluator.lift_total plt.plot(x, y_1, '.', color='b', markersize=4, label='Rectangular lift') plt.plot(x, y_2, '.', color='g', markersize=4, label='Elliptical lift') plt.plot(x, y_3, '.', color='r', markersize=4, label='Total lift') # Graph formatting plt.xlabel('Semi-span location') plt.ylabel('Lift') plt.gca().legend() plt.grid(axis='both', linestyle=':', linewidth=1) plt.show() return None