From 4a2f29713604b5cfe86fe2367c98ff731c34166e Mon Sep 17 00:00:00 2001 From: blendoit Date: Sat, 19 Oct 2019 15:10:38 -0700 Subject: Correct randomization of aircraft and save of component tree and eval results --- evaluator/evaluator.py | 344 ------------------------------------------------- 1 file changed, 344 deletions(-) delete mode 100644 evaluator/evaluator.py (limited to 'evaluator/evaluator.py') diff --git a/evaluator/evaluator.py b/evaluator/evaluator.py deleted file mode 100644 index 53fab3b..0000000 --- a/evaluator/evaluator.py +++ /dev/null @@ -1,344 +0,0 @@ -""" -The evaluator.py module contains a single Evaluator class, -which knows all the attributes of a specified Aircraft instance, -and contains functions to analyse the airfoil's geometrical -& structural properties. -""" - -import sys -import os.path -import numpy as np -from math import sqrt -import matplotlib.pyplot as plt -import concurrent.futures -import logging - -logging.basicConfig(filename='log_eval.txt', - level=logging.DEBUG, - format='%(asctime)s - %(levelname)s - %(message)s') - - -class Evaluator: - """Performs structural evaluations on aircrafts. - Individual aircrafts must claim an Evaluator object as parent.""" - def __init__(self, name): - self.name = name - self.aircrafts = [] - self.results = [] - - self.I_ = {'x': 0, 'z': 0, 'xz': 0} - - def get_lift_rectangular(aircraft, lift=50): - L_prime = [ - lift / (aircraft.wing.semi_span * 2) - for x in range(aircraft.wing.semi_span) - ] - return L_prime - - def get_lift_elliptical(aircraft, L_0=3.2): - L_prime = [ - L_0 / (aircraft.wing.semi_span * 2) * - sqrt(1 - (y / aircraft.wing.semi_span)**2) - for y in range(aircraft.wing.semi_span) - ] - return L_prime - - def get_lift_total(self, aircraft): - F_z = [ - self.get_lift_rectangular(aircraft) + - self.get_lift_elliptical(aircraft) / 2 - for _ in range(aircraft.wing.semi_span) - ] - return F_z - - def get_mass_distribution(self, total_mass): - F_z = [total_mass / self.semi_span for x in range(0, self.semi_span)] - return F_z - - def get_drag(aircraft, drag): - # Transform semi-span integer into list - semi_span = [x for x in range(0, aircraft.wing.semi_span)] - - # Drag increases after 80% of the semi_span - cutoff = round(0.8 * aircraft.wing.span) - - # Drag increases by 25% after 80% of the semi_span - F_x = [drag for x in semi_span[0:cutoff]] - F_x.extend([1.25 * drag for x in semi_span[cutoff:]]) - return F_x - - def get_centroid(aircraft): - """Return the coordinates of the centroid.""" - stringer_area = aircraft.stringer.area - cap_area = aircraft.spar.cap_area - - caps_x = [value for spar in aircraft.spar.x for value in spar] - caps_z = [value for spar in aircraft.spar.z for value in spar] - stringers_x = aircraft.stringer.x - stringers_z = aircraft.stringer.z - - denominator = float( - len(caps_x) * cap_area + len(stringers_x) * stringer_area) - - centroid_x = float( - sum([x * cap_area for x in caps_x]) + - sum([x * stringer_area for x in stringers_x])) - centroid_x = centroid_x / denominator - - centroid_z = float( - sum([z * cap_area for z in caps_z]) + - sum([z * stringer_area for z in stringers_z])) - centroid_z = centroid_z / denominator - - return (centroid_x, centroid_z) - - def get_inertia_terms(self): - """Obtain all inertia terms.""" - stringer_area = self.stringer.area - cap_area = self.spar.cap_area - - # Adds upper and lower components' coordinates to list - x_stringers = self.stringer.x - z_stringers = self.stringer.z - x_spars = self.spar.x[:][0] + self.spar.x[:][1] - z_spars = self.spar.z[:][0] + self.spar.z[:][1] - stringer_count = range(len(x_stringers)) - spar_count = range(len(self.spar.x)) - - # I_x is the sum of the contributions of the spar caps and stringers - # TODO: replace list indices with dictionary value - I_x = sum([ - cap_area * (z_spars[i] - self.centroid[1])**2 for i in spar_count - ]) - I_x += sum([ - stringer_area * (z_stringers[i] - self.centroid[1])**2 - for i in stringer_count - ]) - - I_z = sum([ - cap_area * (x_spars[i] - self.centroid[0])**2 for i in spar_count - ]) - I_z += sum([ - stringer_area * (x_stringers[i] - self.centroid[0])**2 - for i in stringer_count - ]) - - I_xz = sum([ - cap_area * (x_spars[i] - self.centroid[0]) * - (z_spars[i] - self.centroid[1]) for i in spar_count - ]) - I_xz += sum([ - stringer_area * (x_stringers[i] - self.centroid[0]) * - (z_stringers[i] - self.centroid[1]) for i in stringer_count - ]) - return (I_x, I_z, I_xz) - - def get_dx(self, component): - return [x - self.centroid[0] for x in component.x_start] - - def get_dz(self, component): - return [x - self.centroid[1] for x in component.x_start] - - def get_dP(self, xDist, zDist, V_x, V_z, area): - I_x = self.I_['x'] - I_z = self.I_['z'] - I_xz = self.I_['xz'] - denom = float(I_x * I_z - I_xz**2) - z = float() - for _ in range(len(xDist)): - z += float(-area * xDist[_] * (I_x * V_x - I_xz * V_z) / denom - - area * zDist[_] * (I_z * V_z - I_xz * V_x) / denom) - return z - - def analysis(self): - """Perform all analysis calculations and store in self.results.""" - with concurrent.futures.ProcessPoolExecutor() as executor: - f1 = executor.submit(self.get_lift_total) - - for aircraft in self.aircrafts: - # lift = self.get_lift_total(aircraft), - # drag = self.get_drag(aircraft.wing), - # centroid = self.get_centroid(aircraft.wing) - results = {"Lift": 400, "Drag": 20, "Centroid": [0.2, 4.5]} - self.results.append(results) - # results = { - # "Lift": self.get_lift_total(aircraft), - # "Drag": self.get_drag(aircraft), - # "Centroid": self.get_centroid(aircraft) - # } - return results - - # def analysis(self, V_x, V_z): - # """Perform all analysis calculations and store in class instance.""" - - # self.drag = self.get_drag(10) - # self.lift_rectangular = self.get_lift_rectangular(13.7) - # self.lift_elliptical = self.get_lift_elliptical(15) - # self.lift_total = self.get_lift_total() - # self.mass_dist = self.get_mass_distribution(self.mass_total) - # self.centroid = self.get_centroid() - # self.I_['x'] = self.get_inertia_terms()[0] - # self.I_['z'] = self.get_inertia_terms()[1] - # self.I_['xz'] = self.get_inertia_terms()[2] - # spar_dx = self.get_dx(self.spar) - # spar_dz = self.get_dz(self.spar) - # self.spar.dP_x = self.get_dP(spar_dx, spar_dz, V_x, 0, - # self.spar.cap_area) - # self.spar.dP_z = self.get_dP(spar_dx, spar_dz, 0, V_z, - # self.spar.cap_area) - # print("yayyyyy") - # return None - - # print(f"Analysis results for {aircraft.name}:\n", results) - # self.results = self.get_lift_total(aircraft) - - # self.drag = self.get_drag(10) - # self.lift_rectangular = self.get_lift_rectangular(13.7) - # self.lift_elliptical = self.get_lift_elliptical(15) - # self.lift_total = self.get_lift_total() - # self.mass_dist = self.get_mass_distribution(self.mass_total) - # self.centroid = self.get_centroid() - # self.I_['x'] = self.get_inertia_terms()[0] - # self.I_['z'] = self.get_inertia_terms()[1] - # self.I_['xz'] = self.get_inertia_terms()[2] - # spar_dx = self.get_dx(self.spar) - # spar_dz = self.get_dz(self.spar) - # self.spar.dP_x = self.get_dP(spar_dx, spar_dz, V_x, 0, - # self.spar.cap_area) - # self.spar.dP_z = self.get_dP(spar_dx, spar_dz, 0, V_z, - # self.spar.cap_area) - # return None - - def tree_print(self): - """Print the list of subcomponents.""" - name = f" TREE FOR {[_.name for _ in self.aircrafts]} IN {self.name} " - num_of_dashes = len(name) - print(num_of_dashes * '-') - print(name) - for aircraft in self.aircrafts: - print(".") - print(f"`-- {aircraft}") - print(f" |--{aircraft.wing}") - print(f" | |-- {aircraft.wing.stringers}") - for spar in aircraft.wing.spars[:-1]: - print(f" | |-- {spar}") - print(f" | `-- {aircraft.wing.spars[-1]}") - print(f" |-- {aircraft.fuselage}") - print(f" `-- {aircraft.propulsion}") - print(num_of_dashes * '-') - return None - - def tree_save(self, - save_path='/home/blendux/Projects/Aircraft_Studio/save'): - """Save the evaluator's tree to a file.""" - file_name = f"{self.name}_tree.txt" - full_path = os.path.join(save_path, file_name) - with open(full_path, 'w') as f: - try: - for aircraft in self.aircrafts: - f.write(".\n") - f.write(f"`-- {aircraft}\n") - f.write(f" |--{aircraft.wing}\n") - for spar in aircraft.wing.spars[:-1]: - f.write(f" | |-- {spar}\n") - f.write(f" | `-- {aircraft.wing.spars[-1]}\n") - f.write(f" |-- {aircraft.fuselage}\n") - f.write(f" `-- {aircraft.propulsion}\n") - logging.debug(f'Successfully wrote to file {full_path}') - - except IOError: - print(f'Unable to write {file_name} to specified directory.\n', - 'Was the full path passed to the function?') - return None - - def info_save(self, save_path, number): - """Save all the object's coordinates (must be full path).""" - file_name = 'airfoil_{}_eval.txt'.format(number) - full_path = os.path.join(save_path, file_name) - try: - with open(full_path, 'w') as sys.stdout: - self.info_print(6) - # This line required to reset behavior of sys.stdout - sys.stdout = sys.__stdout__ - print('Successfully wrote to file {}'.format(full_path)) - except IOError: - print( - 'Unable to write {} to specified directory.\n'.format( - file_name), 'Was the full path passed to the function?') - return None - - -def plot_geom(evaluator): - """This function plots analysis results over the airfoil's geometry.""" - # Plot chord - x_chord = [0, evaluator.chord] - y_chord = [0, 0] - plt.plot(x_chord, y_chord, linewidth='1') - # Plot quarter chord - plt.plot(evaluator.chord / 4, - 0, - '.', - color='g', - markersize=24, - label='Quarter-chord') - # Plot airfoil surfaces - x = [0.98 * x for x in evaluator.airfoil.x] - y = [0.98 * z for z in evaluator.airfoil.z] - plt.fill(x, y, color='w', linewidth='1', fill=False) - x = [1.02 * x for x in evaluator.airfoil.x] - y = [1.02 * z for z in evaluator.airfoil.z] - plt.fill(x, y, color='b', linewidth='1', fill=False) - - # Plot spars - try: - for _ in range(len(evaluator.spar.x)): - x = (evaluator.spar.x[_]) - y = (evaluator.spar.z[_]) - plt.plot(x, y, '-', color='b') - except AttributeError: - print('No spars to plot.') - # Plot stringers - try: - for _ in range(0, len(evaluator.stringer.x)): - x = evaluator.stringer.x[_] - y = evaluator.stringer.z[_] - plt.plot(x, y, '.', color='y', markersize=12) - except AttributeError: - print('No stringers to plot.') - - # Plot centroid - x = evaluator.centroid[0] - y = evaluator.centroid[1] - plt.plot(x, y, '.', color='r', markersize=24, label='centroid') - - # Graph formatting - plt.xlabel('X axis') - plt.ylabel('Z axis') - - plot_bound = max(evaluator.airfoil.x) - plt.xlim(-0.10 * plot_bound, 1.10 * plot_bound) - plt.ylim(-(1.10 * plot_bound / 2), (1.10 * plot_bound / 2)) - plt.gca().set_aspect('equal', adjustable='box') - plt.gca().legend() - plt.grid(axis='both', linestyle=':', linewidth=1) - plt.show() - return None - - -def plot_lift(evaluator): - x = range(evaluator.semi_span) - y_1 = evaluator.lift_rectangular - y_2 = evaluator.lift_elliptical - y_3 = evaluator.lift_total - plt.plot(x, y_1, '.', color='b', markersize=4, label='Rectangular lift') - plt.plot(x, y_2, '.', color='g', markersize=4, label='Elliptical lift') - plt.plot(x, y_3, '.', color='r', markersize=4, label='Total lift') - - # Graph formatting - plt.xlabel('Semi-span location') - plt.ylabel('Lift') - - plt.gca().legend() - plt.grid(axis='both', linestyle=':', linewidth=1) - plt.show() - return None -- cgit v1.2.3